Power MOSFET and Schottky Diode

20 V, 4.6 A, μCool™ N-Channel, with 2.0 A Schottky Barrier Diode, 2x2 mm WDFN Package

Features

- WDFN 2x2 mm Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- Footprint Same as SC-88 Package
- 1.8 V V_{GS} Rated R_{DS(on)}
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Low VF 2 A Schottky Diode
- This is a Pb-Free Device

Applications

- DC-DC Boost/Buck Converter
- Low Voltage Hard Disk DC Power Source

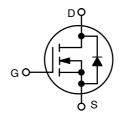
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Paramet	Parameter				
Drain-to-Source Voltage	V_{DSS}	20	V		
Gate-to-Source Voltage			V_{GS}	±12	V
Continuous Drain Current	Steady	T _A = 25°C	I _D	3.8	Α
(Note 1)	State	T _A = 85°C		2.8	
	t ≤ 5 s	T _A = 25°C		4.6	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.5	W
	t ≤ 5 s			2.2	
Continuous Drain Current		T _A = 25°C	I _D	2.6	Α
(Note 2)	Steady	T _A = 85°C		1.9	
Power Dissipation (Note 2)	State	T _A = 25°C	P _D	0.7	
Pulsed Drain Current	t _p =	10 μs	I _{DM}	18	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode	Is	1.8	Α		
Lead Temperature for Solde (1/8" from case for 10 s)		oses	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface Mounted on FR4 Board using 2 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 2. Surface Mounted on FR4 Board using the minimum recommended pad size.

ON Semiconductor®


http://onsemi.com

MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
	65 mΩ @ 4.5 V	3.8 A
20 V	75 mΩ @ 2.5 V	2.0 A
	120 mΩ @ 1.8 V	1.7 A

SCHOTTKY DIODE

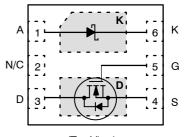
V _R Max	V _F Typ	I _F Max
20 V	0.41 V	2.0 A

N-CHANNEL MOSFET

SCHOTTKY DIODE

WDFN6 CASE 506AN

MARKING DIAGRAM



JK = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

SCHOTTKY DIODE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	20	V
DC Blocking Voltage	V _R	20	V
Average Rectified Forward Current	l _F	2.0	Α

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient - t ≤ 5 s (Note 3)	$R_{ hetaJA}$	58	°C/W
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ heta JA}$	177	

- Surface Mounted on FR4 Board using 2 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Condition	ıs	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 25	0 μΑ	20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 250 \mu A$, Ref to	25°C		10.4		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 16 V, V _{GS} = 0 V	$T_{J} = 25^{\circ}C$ $T_{.J} = 85^{\circ}C$			1.0 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±	ŭ			±100	nA
ON CHARACTERISTICS (Note 5)	-055	103 9 1, 103 =					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 25$	60 μΑ	0.4	0.7	1.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-3.0		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 4.5, I_D = 3.5$	8 A		37	65	mΩ
		$V_{GS} = 2.5, I_D = 2.5$	0 A		46	75	
		V _{GS} = 1.8, I _D = 1.	7 A		65	120	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D =1	.7 A		4.2		S
CHARGES, CAPACITANCES AND GA	TE RESISTANO	CE					
Input Capacitance	C _{ISS}				271		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 V, f = 1 MHz, V$	_{DS} = 10 V		72		
Reverse Transfer Capacitance	C _{RSS}				43		
Total Gate Charge	$Q_{G(TOT)}$				3.7		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 10 V	1 201		0.3		
Gate-to-Source Charge	Q _{GS}	v _{GS} = 4.5 v, v _{DS} = 10 v	, ID = 3.0 A		0.6		
Gate-to-Drain Charge	Q_{GD}				1.0		
SWITCHING CHARACTERISTICS (No	te 6)						
Turn-On Delay Time	t _{d(ON)}				3.8		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DD} = 16 V, I_{D} = 1.0 A, R_{G} = 2.0 Ω			4.7		
Turn-Off Delay Time	t _{d(OFF)}				11.1		
Fall Time	t _f				5.8		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, IS =1.0 A	T _J = 25°C		0.69	1.0	V
					1	1	

- 5. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.26	0.35	V
Forward Voltage		I _F = 1.0 A		0.35	0.42	
		I _F = 2.0 A		0.41	0.52	
Maximum Instantaneous	I _R	V _R = 20 V		0.20	5.0	mA
Reverse Current		V _R = 10 V		0.045	1.0	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 85^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.18		V
Forward Voltage		I _F = 1.0 A		0.29		
		I _F = 2.0 A		0.36		
Maximum Instantaneous	I _R	V _R = 20 V		4.9		mA
Reverse Current		V _R = 10 V		1.6		

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 125$ °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.13		V
Forward Voltage		I _F = 1.0 A		0.25		
		I _F = 2.0 A		0.33		
Maximum Instantaneous	I _R	V _R = 20 V		42		mA
Reverse Current		V _R = 10 V		13		

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Capacitance	С	$V_R = 5.0 \text{ V}, f = 1.0 \text{ MHz}$		52.3		pF

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJF3118NTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJF3118NTBG	WDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

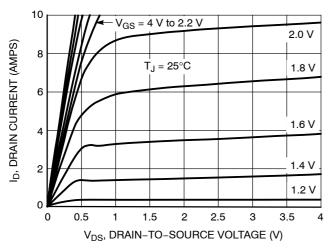


Figure 1. On-Region Characteristics

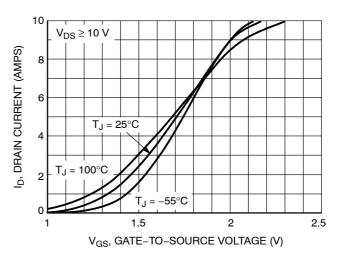


Figure 2. Transfer Characteristics

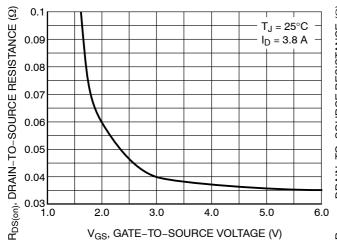


Figure 3. On-Resistance versus Drain Current

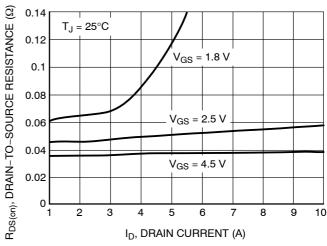


Figure 4. On-Resistance versus Drain Current and Gate Voltage

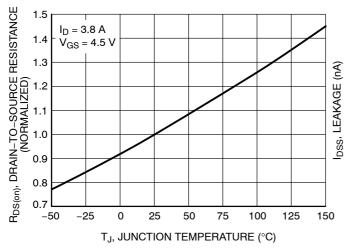
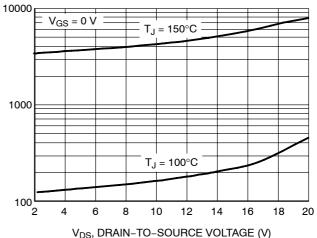
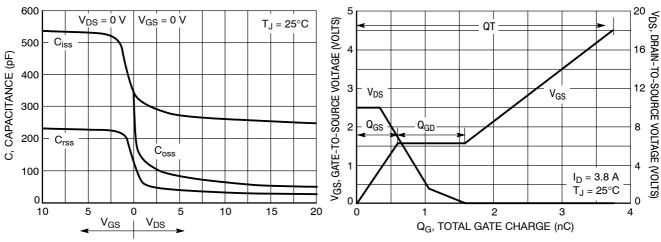
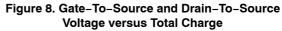


Figure 5. On–Resistance Variation with Temperature


Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

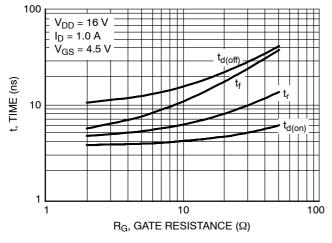


Figure 9. Resistive Switching Time Variation versus Gate Resistance

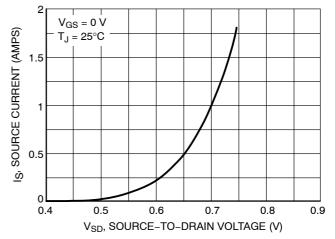
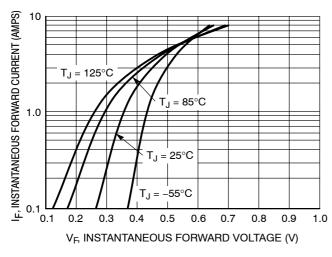



Figure 10. Diode Forward Voltage versus Current

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

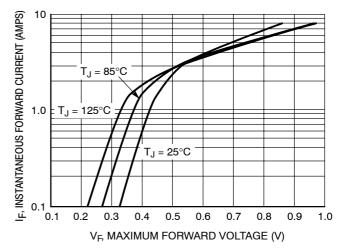


Figure 11. Typical Forward Voltage

Figure 12. Maximum Forward Voltage

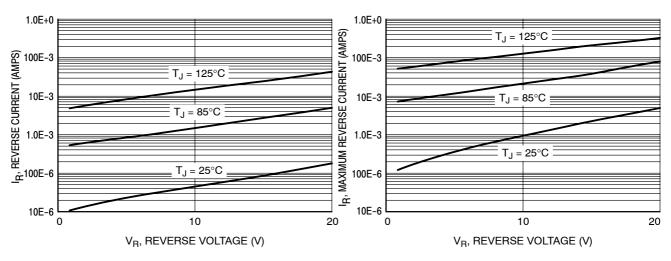
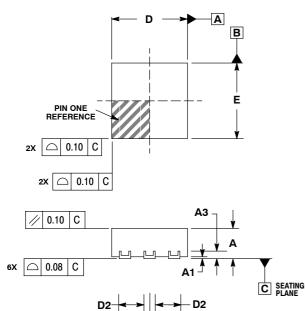



Figure 13. Typical Reverse Current

Figure 14. Maximum Reverse Current

PACKAGE DIMENSIONS

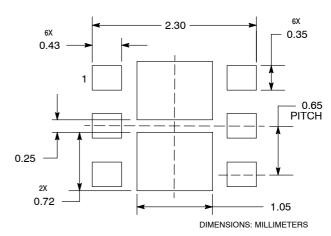
WDFN6, 2x2 CASE 506AN-01 **ISSUE B**

6X J

BOTTOM VIEW

6X L

NOTES:


- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.

 CONTROLLING DIMENSION: MILLIMETERS.

 DIMENSION & APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.70	0.80		
A1	0.00	0.05		
A3	0.20 REF			
b	0.25	0.35		
D	2.00 BSC			
D2	0.57	0.77		
E	2.00) BSC		
E2	0.90	1.10		
е	0.65 BSC			
K	0.25 REF			
L	0.20 0.30			
J	0.15	REF		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 μ Cool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

e 4X

b 6X 0.10 C AB

Ф

С 0.05

NOTE 3

П

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and ware registered traderlanks of semiconduction. Components industries, EC (SCILLC) solicit eservices the right to finate changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specificalized so vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Ce Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative